Since 18/01/2017

header ads

The most known Electronic Structure Codes

There are many availible ab initio codes but we will present the most known.


 USPEX

USPEX is a code for predicting the structure of crystals, surfaces and nanoparticles using a specifically developed evolutionary algorithm (also called USPEX). The efficient structure searching algorithm enables prediction of large and complex structures that possess the greatest stability at given conditions or desired physical properties. It can also simultaneously search for stable structures and compositions in multicomponent systems. Structure prediction is made particularly efficient by the use of special variation operators, preconditioning schemes, and structure fingerprint functions. Simulations using other, in general less efficient, methods (random sampling, particle swarm optimization) are also possible. For structure relaxations and energy evaluations, used as part of structure prediction algorithm, USPEX is interfaced with external codes (VASP, SIESTA, GULP, MD++). Calculations can be efficiently run in parallel on hundreds or thousands of CPUs.

(Licence Details: available for free for academic users. If you are interested in this package please contact Prof. Oganov - see alsohttp://mysbfiles.stonybrook.edu/~aoganov/USPEX.html
CASTEP

CASTEP is a quantum mechanics module used to simulate the properties of solids, interfaces, and surfaces for a wide range of materials classes including ceramics, semiconductors, and metals. It enables the user to perform first-principles quantum mechanics calculations to explore; properties of crystalline materials (semiconductors, ceramics, metals, minerals, zeolites etc); properties of surfaces, and surface reconstructions; chemistry of surfaces; electronic structure (band-structures and densities of states); optical properties of crystals; properties of point defects (e.g. vacancies, interstitials and substitutional impurities); extended defects (e.g. grain boundaries and dislocations); 3D form of charge density and wavefunctions of a system. 
(Licence Details: An agreement in 1999 between Accelrys and UKCP meant that CASTEP became available free to UK universities)


VASP

VAMP/VASP is a package for performing ab-initio quantum-mechanical molecular dynamics (MD) using pseudopotentials and a plane wave basis set. The approach implemented in VAMP/VASP is based on a finite-temperature local-density approximation (with the free energy as variational quantity) and an exact evaluation of the instantaneous electronic ground state at each MD-step using efficient matrix diagonalization schemes and an efficient Pulay mixing. These techniques avoid all problems occurring in the original Car-Parrinello method which is based on the simultaneous integration of electronic and ionic equations of motion. The interaction between ions and electrons is described using ultrasoft Vanderbilt pseudopotentials (US-PP) or the projector augmented wave method (PAW). Both techniques allow a considerable reduction of the necessary number of plane-waves per atom for transition metals and first row elements. Forces and stress can be easily calculated with VAMP/VASP and used to relax atoms into their instantaneous groundstate.

(Licence Details: VAMP/VASP is not public domain - if you are interested in this package please contact Prof. Hafner - spamblocked email)

FHI-aims

FHI-aims (the "Fritz-Haber-Institute ab initio molecular simulations" package) is an efficient, accurate implementation of all-electron density functional theory and beyond based on numeric atom-centered orbital basis sets. Hierarchical basis sets for all elements are provided from fast "light" settings up to the meV-converged total energy limit (for ground state DFT). Beyond standard DFT-LDA and -GGA, the code supports (for cluster geometries) hybrid functionals, Hartree-Fock, and post-Hartree-Fock methods such as MP2 and RPA, as well as GW corrections for single (quasi-)particle states. For ground-state DFT, molecular and periodic systems are supported on equal footing, including structure relaxation and ab initio molecular dynamics. The code scales well with system size (up to thousands of atoms) and on massively parallel computer platforms up to thousands of CPUs (e.g., IBM's BlueGene). A description of the underlying algorithms can be found here: http://dx.doi.org/10.1016/j.cpc.2009.06.022 

Licence Details: FHI-aims is not public domain - if you are interested in this package please follow the directions at the project website. 


ABINIT Software Project

ABINIT is a package whose main program allows one to find the total energy, charge density and electronic structure of systems made of electrons and nuclei (molecules and periodic solids) within Density Functional Theory (DFT), using pseudopotentials and a planewave basis. ABINIT also includes options to optimise the geometry according to the DFT forces and stresses, or to perform molecular dynamics simulation using these forces, or to generate dynamical matrices, Born effective charges, and dielectric tensors. Excited states can be computed within the Time-Dependent Density Functional Theory (for molecules, or within Many-Body Perturbation Theory (the GW approximation). In addition to the main ABINIT code, different utility programs are provided.

(Licence Details: ABINIT Version 3 is distributed under the GNU General Public Licence.)

PWSCF (QUANTUM-ESPRESSO)

Plane-Wave Self-Consistent Field is a set of programs for electronic structure calculations within Density-Functional Theory and Density-Functional Perturbation Theory, using a Plane-Wave basis set and pseudopotentials.

(Licence Details: PWscf is released under the GNU General Public License.)

LMTO

Linear-muffin-tin-orbital programs. (LMTO Electrons, LMTO Phonons, LMTO Magnons)
(Licence Details: Available after accepting a licence agreement)

FLEUR

A project for ab initio atomistic simulations and visualization. The FLAPW-Method (Full Potential Linearized Augmented Plane Wave Method) is an all-electron method which within density functional theory is universally applicable to all atoms of the periodic table and to systems with compact as well as open structures. It is widely considered to be the most precise electronic structure method in solid state physics. Due to the all-electron nature of the method, magnetism is included rigorously and nuclear quantities e.g. isomer shift, hyperfine field, electric field gradient (EFG), and core level shift are calculated routinely. Also open systems such as surfaces, clusters or inorganic molecules represent no basic problem. The capability of calculating the forces exerted on the atoms within the LAPW method opens the gate to structure optimization and molecular dynamics and puts this method up on the same category as the widespread pseudopotential method, but able of treating systems pain-full or unattainable by the pseudopotential method. 

(Licence Details: To access these files you need to get a username and password by emailing Stefan Blügel - spamblocked email)

Wien2K

The program package WIEN2k allows to perform electronic structure calculations of solids using density functional theory (DFT). It is based on the full-potential (linearized) augmented plane-wave ((L)APW) + local orbitals (lo) method, one among the most accurate schemes for band structure calculations. In DFT the local (spin) density approximation (LDA) or the improved version of the generalized gradient approximation (GGA) can be used. WIEN2k is an all-electron scheme including relativistic effects and has many features.

(Licence Details: Fill in online request form and pay a licence fee of EUR 400 (academic) or EUR 4000 (commercial)

Crystal

The CRYSTAL program computes the electronic structure of periodic systems within Hartree Fock, density functional or various hybrid approximations. The Bloch functions of the periodic systems are expanded as linear combinations of atom centred Gaussian functions. Powerful screening techniques are used to exploit real space locality. The code may be used to perform consistent studies of the physical, electronic and magnetic structure of molecules, polymers, surfaces and crystalline solids.
The program can automatically handle space symmetry (230 space groups, 80 two-sided plane groups, 99 rod groups, 45 point groups are available ). Point symmetries compatible with translation symmetry are provided for molecules. 
Input tools allow the generation of a slab (2D system), or a cluster (0D system), from a 3D crystalline structure, the elastic distortion of the lattice or the creation of a supercell with a defect . 
The program can perform Restricted Closed Shell, Restricted Open Shell, and Unrestricted calculations. All-electron and valence-only basis sets with effective core pseudo-potentials are allowed.

(Licence Details: Sign a licence agreement and pay licence fee of acadmic/non-profit/for-profit EUR 750/1800/5000)

Exciting

exciting is developer-friendly through a clean and fully documented programming style, a modern source-code management, a dynamical build system, and automated tests. At the same time it is user-friendly, comprising various tools to create and validate input files and to analyze results. 

ELK FP-LAPW Code"

An all-electron full-potential linearised augmented-plane wave (FP-LAPW) code with many advanced features. Written originally at Karl-Franzens-Universität Graz as a milestone of the EXCITING EU Research and Training Network, the code is designed to be as simple as possible so that new developments in the field of density functional theory (DFT) can be added quickly and reliably. 

The code is freely available under the GNU General Public License. 


YAMBO

Yambo is a FORTRAN/C code for Many-Body calculations in solid state and molecular physics. Yambo relies on the Kohn-Sham wavefunctions generated by two DFT public codes: abinit, and PWscf. The code was originally developed in the Condensed Matter Theoretical Group of the Physics Department at the University of Rome "Tor Vergata" by Andrea Marini. 

Previous to its release under the GPL license, yambo was known as SELF. 


Virtual NanoLab

Virtual NanoLab is a graphical user interface that enables users to build geometries, set up calculations, read, and plot output results produced by Atomistix ToolKitVASPABINITQuantum-Espresso, etc. It has an atomic 3D builder with a large structure database and set of tools that enables users to build complex nanostructures easily.
More info: www.quantumwise.com 


Referencehttp://www.psi-k.org/codes.shtml

Post a Comment

0 Comments